Supporting visual quality assessment with machine learning

نویسندگان

  • Paolo Gastaldo
  • Rodolfo Zunino
  • Judith Redi
چکیده

Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly non-linear behavior of human perception; as a result, they may be complex and computationally expensive. Conversely, machine learning (ML) paradigms allow to tackle the quality assessment task from a different perspective, as the eventual goal is to mimic quality perception instead of designing an explicit model the human visual system. Several studies already proved the ability of ML-based approaches to address visual quality assessment; nevertheless, these paradigms are highly prone to overfitting, and their overall reliability may be questionable. In fact, a prerequisite for successfully using ML in modeling perceptual mechanisms is a profound understanding of the advantages and limitations that characterize learning machines. This paper illustrates and exemplifies the good practices to be followed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources

The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...

متن کامل

Machine Learning Solutions for Objective Visual Quality Assessment

Objective metrics for visual quality assessment usually improve their reliability by explicitly modeling the highly non-linear behavior of human perception; as a result, they often are complex, and computationally expensive. Conversely, Machine Learning (ML) paradigms allow to tackle the quality assessment task from a different perspective, as the eventual goal is to mimic quality perception in...

متن کامل

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

No-reference image quality assessment using modified extreme learning machine classifier

In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between...

متن کامل

Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm

High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Image and Video Processing

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013